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Abstract

A decision tool is described and applied to the problem of evaluating farm or rangeland
management systems with respect to both economic and environmental criteria. The method
quickly computes the possible range of value from the most optimistic to the most pessimistic
(best to worst) for any given hierarchy of the multiple attributes. The method is to be applied
after commensurate attribute values have been determined for each alternative without requiring
one to specify or determine explicit weights on the attributes. The decision tool is particularly
useful for examining alternatives from numerous decision-making viewpoints or by multiple
decision makers. The importance order of the criteria or attributes at any tier in the hierarchy
can be changed and the value range computed again using a simple algorithmic method that
does not require a linear programming solver. This solution method makes it easy to determine
the result of modifying priorities in portions of the hierarchical architecture without
recalculating the contributions of unaffected parts. The method is applied to the problem of
determining a possible replacement farm management system for several fields in western
lowa. Environmental and economical improvement over the current farming system is indicated
by several of the altemative systems. Current projects are underway to develop indices of
rangeland and soil health.

Keywords: decision making, multiple attribute, multiple objective, agriculture,
environmental management.

1. Introduction

This work is prompted by the need for tools that can be easily and quickly understood
and sensibly applied to multiple attribute decision making situations that occur in land
management. The tool presented in this paper, however, is not limited to applications
for land management. It is readily applicable to any decision-making situation that can
be similarly described. Examples among the problems that could be considered include:
determining which among a suite of feasible farm management practices should be
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preferred on a given field; or determining which field from among several feasible
locations is best for a given management system; ranking rangeland watersheds or other
ecosystems for the purpose of determining where limited funds and time should be
concentrated. Project or porifolio selection is analogous to the latter, while product
comparison or suitability to the former. Alternative facility layouts and transportation
planning are other decision making arcas that the method described herein could
benefit.

The development of our decision support tool was encouraged by statements in Dyer
et al. (1992) that simple, understandable, and usable approaches for solving multiple
criteria decision making (MCDM) or multiple attribute utility theory (MAUT) problems
are still needed. The added complications of multiple decision makers as well as
concerned and/or involved parties in environmental decision-making, mandated that
much of the subjectivity (single decision maker perspective) involved in existing
MCDM/MAUT methods be eliminated.

We consider a problem that has been formulated as a hierarchical multi-attribute or
multiple criteria decision problem. The development here is related to earlier work of
Salo and Hamildinen (1992) and Yakowitz et al. (1992, 1993a) that considers the
impact on an additive value function caused by allowing the attribute weights to vary
subject only to an importance ordering of the criteria. These works fall under the
category of partial information or interval weights in MAUT (Fishburn, 1965;
Kirkwood and Sarin, 1985; Claessens et al. 1991; Bana e Costa and Vincke, 1995;
Hazen, 1986 contains a discussion and numerous references).

Most techniques proposed in the literature for assessing weights, either solicit
weights directly, or seek to discern them indirectly, from the decision maker
(Goicoechea er al., 1982; Keeney and Raiffa, 1976; Saaty, 1980 are examples). The
resultant ranking of the alternatives are often extremely sensitive to the importance
order of the attributes, and therefore the weights. The calculations for examining this
sensitivity are straightforward in the case of a simple ordinal priority ranking of all of
the attributes (Yakowitz et al., 1993a). However, the complexity imposed by a
hierarchical architecture of the criteria at first appears to be difficult to overcome in a
simple way. Yet, it is just this type of structure that is needed to define many complex
decision making problems.

Under a hierarchical structure, the decision priorities alone do not necessarily imply
an ordinal ranking of each individual attribute. Therefore, examining the solutions of
the linear programs given in Yakowitz er al. (1993a) and elsewhere, which are
described in the next section, without considering the possible added freedom (or
relaxation of the weights) due to the hierarchical structure, does not provide the full
range of value of the additive value function. The method presented here does. It allows
one to quickly compute the range of values from the best to the worst for a
hierarchically arranged multiple attribute problem under the assumption of an additive
value function. The method allows the decision maker (DM) to quickly assess the most
optimistic and most pessimistic DM viewpoint given multiple importance orders of the
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attributes at any tier in the hierarchy. We assume that the attribute values for each
alternative are already in common units and common range as determined by some
multiple attribute or scoring method. For example, the Analytic Hierarchy Process
(AHP) of Saaty (1980), or scoring functions such as those of Wymore (1988) or others
could be used to assess the attribute values or convert data to unit common values and
ranges.

Computing the range of value of an additive value function makes it possible for
various stakeholders or interested parties to determine the sensitivity of the ranking of
alternatives to the hierarchical order. Often this order is a compromise between various
objectives. Examining the range of the value function under other possible hierarchical
scenarios, may reveal an alternative choice that is favored by each party and eliminates
the need for the often contentious task in group decision making of discerning the
weights explicitly.

We begin by defining what we mean by a hierarchy. This is followed by a brief
description of the algorithm for computing the range of the value function. Algorithmic
details are then developed, followed by a detailed description of the calculations needed
for a specific hierarchical structure. The generalization to more complicated
hierarchical structures is readily apparent. This method is then used for evaluating four
alternative farming systems with respect to specific economic and environmental
decision criteria. The concluding section includes a discussion of current projects under
consideration using the evaluation tool developed in this paper.

2. Defining the hierarchy

A generic hierarchical architecture for a multi-attribute decision problem is illustrated
in Figure 1. Note that we have assumed a quite generic structure where branches of the
hierarchy may terminate at different tiers or levels. Dummy elements may, of course, be
added at intermediate levels if equal depth branches are desired. The Major Goal is at
the highest level (Tier 1). This level could be choosing a Sustainable Agricultural
System from a finite number of alternatives for a given farm/ranch or region; or
choosing the best Traffic Plan from among several alternative plans. The subsequent
levels (Tier 2 through N) contain sub-elements of the parent or previous levels. Thus,
for example in the sustainable agriculture problem, Tier 2 could include environmental,
economic, and social sub-goals. Subsequent levels of the environmental branch could
then include surface water, sub-surface water, species diversity, and soil, followed by
criteria including fertilizer and pesticide impacts, and erosion under the proper
category. Of interest here is the effect of changing the importance order of the elements
of the hierarchy on the range of values of the additive value function. For example, one
may want to know how alternative farm or range management alternatives would be
ranked if environmental criteria were given a higher priority than economic criteria.
However, the farmer or rancher may want to give a higher priority to the economic
criteria considered. Importance order 1s often the key issue of contention when there are
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multiple stakeholders. In all figures, it is assumed that the importance order is from left
to right. That is, for elements in the same tier, that emanate from a common branch, an
element to the left has a higher priority and therefore more "weight" in the decision
making process at that level. No assumption is made regarding the priority relationship
between elements emanating from different branches even if they are in the same tier.
As is the case in most multi-attribute solution methods, the goal of the methodology
is to determine the value of an additive value function that can be used to rank the set of

alternatives.
Main
Tier | goal
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. element element element
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Figure 1. Generic decision hierarchy.

An additive value function takes the following form:
Viwy) =X; wy; ,

where i ranges over the terminal elements of each branch in the hierarchy; v indicates
the value assigned to the alternative with respect to each terminal element; and the
weights, w, are consistent with the hierarchy and normalized so that they sum to a finite
number (assumed to be 1 in all calculations given below). We emphasize that V' 1s a
function of both the individual criterion values determined for each alternative and the
weights (unknown) for each attribute or criteria. Since we are primarily concerned with
the effects on the above function caused by changing hierarchical element priorities, we
will assume that for each alternative, v, is fixed for all i. We refer to the above as V, or
with subscript, ¥, , when wishing to distinguish between alternatives (in this case the
values, v, will be double subscripted, v, ).

The algorithm for assessing the full range from the besr to the worst under our
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assumptions begins at the lowest tier of each branch of the hierarchy. Best and worst
additive values are computed for each element using analytic solutions to two simple
linear programs that maximize and minimize ¥ at the parent element over all weights
consistent with the importance order of the decision elements. These same programs are
used at intermediate elements, substituting the maximum (or minimum) values
previously computed as the values for those elements that have descendent elements,
until the main or first tier is reached. Altering the priority at any level requires redoing
only those calculations that occur after that point to the main or first tier. This fact
makes it easy to examine the effects of changing priorities or decision maker
preferences, which may be especially useful if there are more than one decision maker
or affected party involved.

3. Algorithmic details

3.1. Computing best and worst subvalues for the lowest tier of each
branch

Given the priority order of the criteria at the lowest tier of each branch, best and worst
additive values can be found without requiring the decision maker to set specific
weights for each of the criteria (see Claessens ef al., 1991; Salo and Hamaéléinen, 1992;
or Yakowitz et al., 1992, 1993a). Referring to the notated branch at Tier N of Figure 1,
it is assumed that if i < j then criterion / has a higher priority than criterion j (i.e.
criterion [ has higher priority than criterion 2 and so forth). Since there are m criteria,
the importance order suggests that we should require that the weights, w,, i=/,m, have
the following relation:

Therefore, given the importance order and the criteria values for alternative j, the
best (worst) composite score that alternative j can achieve is determined by solving the
following linear programs (LPs):

Best (Worst) Additive Value:
max(min)k. Vj = E:"; Wi Vi
st 2hw=1

Wy = W2 i Wy = (.
The best additive value is found by maximizing the objective function while the

worst additive value is found by minimizing the objective function. The first constraint
is a normalizing constraint. The second, fixes the importance order and restricts the
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weights to be positive. The above linear programs can be easily solved analytically. For
k=1,....m, let

Sy =1k Zi vy (1)

Then, the best or maximum additive value, Max V, for alternative j is given by :
The worst or minimum additive value, Min V, for alternative j is given by :
Min V;= min {S,}. (3)

For proofs see Yakowitz er al. (1993a) or Fishburn (1965). The above is equivalent
to evaluating the objective function at the extreme points of the constraint set, which
occur at the points {1,0,0..,0}, {1/2,1/2,0,...,0},  {1/3,1/3,1/3,0,...,0},...,
{1/N,1/N,...,1/N}, and selecting the vectors that produce the min and max. All other
feasible weight vectors can, of course, be written as linear combinations of these N
vectors. This result is also known as Paelinck's Theorem and is proved and described in
Claessens ef al. (1991).

In the case of equal importance of some criteria, there are strict equalities in the
importance order constraint set, i.e. W;=w,,, for j in a subset, I, of the integers 1
through m. If we define K = { 1, 2, ..., m}\ I, then the above formulas for Max and Min
V apply if k is restricted such that ke K.

Calculations for cases in which it is desired to specify the level of preference
between criteria (for example, criterion 1 1s to have a weight at least twice that of
criterion 2) require a modified definition of (1). Suppose that one supplies constants ¢; >
1, i=2,...,m, that imply the following relationships:

w}' 2C3w2' w2 2 C.?W.T' v Wi 2 CoWe 2 {)

Then if we let ¢, = I the required modification to (1) is as follows':

I v;
TZ ,';f T B (4)
s Db 6™ e

[&]
For each alternative, the solutions (2) and (3), using (1) or (4), determine the
maximum and minimum additive value possible for any combination of weights that are

""This formula corrects a typographical error on page 175 of Yakowitz, Lane and Szidarovszky (1993a).
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consistent with the importance order of the criteria/attributes. Having these two
objective values available immediately alerts the DM to the sensitivity of each
alternative to the weights possible with the current importance order of the criteria.
These values can be displayed graphically (illustrated later) in the form of side by side
bar graphs with the best value for each alternative at the top of each bar and the worst
value at the bottom.

An alternative that exhibits little difference between the best and the worss values
indicates that this alternative is relatively insensitive to the weights consistent with the
given importance order. Additionally, if the worst value of one alternative is greater
than the best value of another alternative, then clearly, that alternative dominates the
other alternative. These alternatives are a subset of those that dominate in additive value
with respect to a given importance order and are said to strongly (Yakowitz et al.,
1993a) or absolutely (Salo and Hamildinen, 1992) dominate. With respect to the given
importance order and in the absence of strong or absolute dominance, one can
determine dominance in additive value of Alternative j by Alternative k if and only if
Sy =8, foralli=1,2,...,m, and S, > S, forat least one i(see Yakowitz et al., 1993a,
for a discussion and theorems).

3.2. Computing the best and the worst values for a multi-level hierarchy

One way to account for a hierarchy of the criteria and still provide the range from the
best to the worst composite scores is to include additional constraints in the LPs given
above. For example, suppose we have a three tier hierarchy, and each element / in Tier
2 is composed of #; sub-criteria in Tier 3, the terminating level. Let v;, ; and w,,
k=1,...,t, indicate the values (scores) for alternative j, and sub-weights (unspecified),
respectively, associated with sub-criteria k of criteria i. Then, the following two
constraints for each / are added to best/worst LPs to account for this hierarchy:

wi= wyt wit ot ow,

W2 w2 . 2 w2 0.

The objective functions of the best/worst LPs for alternative j are then replaced by:

max(min) 2., W, Vi 7

Again, one can obtain the range from maximum to minimum without the need to
specify weights or sub-weights. Linear modifications due to more general hierarchical
considerations are easily made in this manner. Note that the above formulation makes
no assumptions regarding the ordinal ranking of attributes on different branches, a
desirable feature in cases when it is not possible or undesirable to prioritize attributes
across branches. An explicit linear program for computing the maximum and minimum
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V for any hierarchy can be formulated and solved. The notation needed to indicate each
level of the hierarchy, however, becomes very cumbersome. Solving the resulting linear
programs explicitly for each alternative is not necessary, however, since a simple
algorithm that considers each portion of the hierarchy in an optimal manner is
developed here. The algorithm, which could also be described in dynamic programming
(Sniedovich, 1992) terms, is more suitable for examining the effects of changing
priorities than a linear programming model. Calculating min and max V' is an intuitively
simple procedure when performed from the lowest tier up. The contribution of each
level is solved optimally in an iterative manner yielding the optimal objective values
(min or max) once the top tier is reached. To illustrate this fact, the solution procedure
will be described for the four tier decision hierarchy of Figure 2 and then applied to the
problem of considering an alternative farming system on a small watershed (field size)
in western [owa.

3.3. Algorithm for computing the range of values under a given hierarchy

The following procedure is described to obtain the range from the best to the worst of
the additive value function under the hierarchy illustrated in Figure 2. The procedure
for any other hierarchical variation is handled in a similar manner and will become
transparent.

. Main
Tier 1 goal Best (worst) V

element | element element
Tier 2 21 22 23

max (min) v(2.1) v(2.2) max (min) v(2.3)
Tier 3 [ | |
element element clemem element element element
3.1 1.2 313 314 3.3 332
max (min) v(3.1.1) vi3.1.2)  v(3.13) v(i.l4) max (min}w(3.3.1)  v(3.3.2)

I l l | | l l

Tier 4 element element element element element element
4.1.1.1 4.1.1.2 4.1.1.m 4311 43.1.2 43.1.n
vi4.1.1.1) v(4.1.1.2) vi4.1.L.m) w4.3.11) w43.1.2) vi4.3.1.n)

Figure 2. Decision hierarchy for algorithmic explanation.
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For each alternative under consideration, we assume that the associated value for the
terminal elements has been determined by some means. Thus, for Figure 2, the values
indicated by v(2.2), v(3.1.2), v(3.1.3), v(3.1.4), v(3.3.2). v4.1.1.1) .., v(4.1.1.nm),
v(4.3.1.1) ..., v(4.3.1.n), are known for each alternative and are in a common range. All
indices are with respect to the hierarchy of Figure 2, which indicates the inputs and
calculations required. Calculations start at the lowest Tier in the hierarchy. In this case,

Tier 4.

& Tierd.
= Compute for each alternative J,
SALDy=1k5%_, w411, k=1,..,m,
and S(4.3.1),= 1k 5, ., , v(43.1), k=1,... n.

. Then according to Eq. (1) and (2),
' max (min) v(3.1.1) = max (min), {S(4.1. 1)y}, and
max (min) v,(3.3.1) = max (min), {S(4.3.1),,).

& Tier 3.
Compute the following for each alternative j:
Spax(3. D=1 Z, -y v(3.10), fork=1,... 4,
with v(3.1.1)= max (v/(3.1.1)), and
Suin(3- D=1k X, _;  v(3.1i), fork=1,... 4,
with v(3.1.1)= min (v(3.1.1)).
Soax(3.3) =1k Z, - 4 vj(3.’3.ij, k=12,
with v(3.3.1)= max (v(3.3.1)), and
Suin(3-3) =1k Z; | 4 vi(3.3.0), k=12,
with v(3.3.1)= min (v,(3.3.1)).

Then:
_ max (min) v)(2.1) = max (min) {S ..« imim(3- 1)y}, and
i : max (min) v(2.3) = max (min), {S(3.3),}.

. Tier 2.
Compute the following for each alternative ;:
S,,,a,(2),g- =lkZ _, ,v(21), fork=1,. 3,
with v(2.1)= max (v(2.1)), and
v(2.3)= max (v(2.3)), and
Swil 2y = Vk Z; ) 4 vi(2.0), fork=1,.. 3,
vi(2.1)= min (v)(Z. 1)), and
vi(2.3)= min (v(2.3)).

Then:
Best (Worst) V, = max (min), {Sm”'\.l,mm(Z_}k;}.
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A bar graph indicating the range from the Best V, the top of each bar, to the Worst 1
the bottom of each bar, for each alternative would aid the decision maker by indicating
possible domination and the sensitivity of each alternative to the priorities in the
hierarchy. As discussed and described in Yakowitz ef al. (1992, 1993a), the alternatives
can be ranked based on the average of the Best and the Worst V). Clearly from the end
of Section 3.1 above, this ranking preserves all dominance relationships and provides a
means of ranking non-dominated alternatives that takes into account all possible DM
perspectives with respect to the current importance ordering. It is well known that for
non-dominated alternatives it is possible to have rank reversal even for weight sets that
are consistent with the hierarchy importance orders. Therefore, ranking based on the
midpoint can be viewed as less risky than ranking based on a single set of weights since
the midpoint ranking includes information from the most pessimistic as well as most
optimistic viewpoints considering the entire decision hierarchy structure.

Changing an importance ordering in any tier in the hierarchy, requires only
recalculating appropriate max and min values in the tiers that appear above the point at
which the change is made. For example, suppose one wishes to consider the scenario in
which the elements previously ordered in Tier 2 of Figure 2 are reversed. Then, only
those calculations indicated under Tier 2 given above, need to be computed again.
Other scenarios that reflect the differing priorities of interested parties or multiple
decision makers could be quickly examined. If one or two alternatives stand out as
doing well under multiple decision scenarios, one would have a defensible basis for
supporting these alternatives and avoiding unnecessary argument. In fact, if two
alternatives are non-dominating and changing priorities still produces midpoint values
that prefer one alternative over the other, then ranking based on the midpoint values is
less risky in the sense that it preserves the ranking of the majority of decision makers
that agree with one or the other of the decision hierarchy structures examined.

4. Evaluating alternative farming systems for a field in
western lowa, USA

Under the management of National Soil Tilth Laboratory of the US Department of
Agriculture - Agricultural Research Service(USDA-ARS) is the Deep Loess Research
Station located near Treynor, lowa. Watershed #1 is a 32 hectare field that has been
planted annually with corn (Zea mays L.) on the contour since research on the
watershed was initiated in 1964. The tillage practice in current use is known as deep
disking. The current system was used to determine baseline values of each of the
attributes. To improve farm net return as well as concern for nitrate concentrations in
the ground water, a corn and soybean (Glycine max L.) crop rotation is being
considered along with four different tillage practices: deep disking (DD), chisel plow
(CP), ridge till (RT), and no till (NT). As an indication of the benefit obtained by
changing the cropping system alone, an alternative that uses the no tll practice but
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continues the planting of only corn (NT-c) is also included. The alternatives are
compared based on predicted amounts of sediment, nutrients, and pesticides leaving the
field, which have an impact on surface and ground water quality, as well as the farmer's
predicted net returns for each of the five alternative management systems. Figure 3
illustrates the structure of the decision hierarchy and the attributes used to evaluate each
management system.

Table 1 contains the values for each attribute for each alternative determined using a
USDA-ARS decision support system (see Yakowitz et al., 1992, 1993b). Each
management system was simulated for 24 years and the average annual values of the
predicted amounts of the listed attributes were scored compared to the predicted
amounts for the existing management system. All scores range from 0 to 1 for all
attributes. A score of better than 0.5 indicates that that management system improved
with respect to that attribute over the current system, while a score of less that 0.5
indicates a less desirable result.

Table 1. Auributes and values or scores for four simulated farm management systems on a field in
western lowa.

Alt. #1 DD Al #22RT  AIL#3CP Al #4NT Al #5 NT-c

net income 0.67 0.82 0.71 0.82 0.66
nitrates (s) 0.51 0.98 0.91 0.99 1.00
nitrates (ss) 0.74 0.66 0.73 0.52 0.30
phosphorus 0.38 0.93 0.81 0.95 0.96
sediment 0.34 0.97 0.91 0.99 1.00
pesticide A 0.92 0.81 0.97 0.85 0.44
pesticide B 0.94 0.79 0.98 0.86 0.44

Applying the algorithmic steps detailed above, the results for the importance orders
(left to right on common branches) indicated in Figure 3 are illustrated in the Figure 4a
bar graph. When ecoromic improvement has a higher priority than environmental
improvement, all alternatives except #5 do better than the baseline or current
management system (indicated at the 0.5 point), even at their worst scores. Alternatives
#2 and #4 attain the highest best scores. Ranking based on the midpoint of the bars
(average of best and worst) puts Alternative #2 on top, Alternatives #3 and #4 tied in
second place, followed by Alternative #1 and then #5. This order of the alternatives
never ranks an alternative above one that it is dominated by (Yakowitz er al. 1993a).
Figure 4b indicates the results when the importance order at the first branch (tier 2) is
reversed. In this case, environmental improvement is given a higher priority than
economic improvement.
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Figure 4. Value range from best to worst for farm management system problem. Results when economic
improvement is preferred over environmental improvement (a.) and results when environmenial
improvement is preferred over economic improvement (b.). i
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While all of the first four alternatives do at least as well as the baseline, Alternative
#3 could be preferred over the others since it has both a high best and worst score. The
range of values possible for Alternative #3 indicates that this alternative is the least

sensitive fo the weights. In other words, this alternative is affected the least by any
particular decision maker's weight preferences given the importance order structure of
the hierarchy of Figure 3. Alternatives #2 and #3 perform well with respect to both
goals. In fact, the farmer and the community would benefit by adopting any one of the
alternatives considered in this example study and would benefit the most with respect to
the given criteria by adopting either Alternative #2, RT, or #3, CP. Other decision
hierarchy scenarios that take into account both on and off farm impacts, long and short
| term risks, additional criteria, and other alternatives could be examined to provide
~ further confidence in a choice.

5. Other applications, extensions and concluding remarks

The method described herein explicitly calculates the full range of values possible for
an additive value function subject to the priorities of a hierarchical decision structure.
The procedure involves the solutions to two simple linear programs and a solution
method not requiring an LP solver was presented. This procedure also minimizes the
number of calculations needed to examine the effects of changes to the hierarchical
structure and can lend insight into the evaluation process. The methodology has the
advantage of including all possible decision maker points of view, from the most
. pessimistic to the most optimistic, within the structure of the hierarchy.
I Some remarks with respect to the bar charts and evidence of domination or non-
domination need to be addressed. First, ranking based on the midpoint is a basis for a
- decision but other factors should be considered. For example, it is clear that if the
~ results produce a lengthy sized bar (additive value range) for an alternative, that
~ alternative is sensitive to weights consistent with that hierarchy. Therefore an
- alternative that has a high and narrow range from best to worst does well and is less
' risky with respect to the feasible weights for the given hierarchy. If the bar for one
. alternative contains the range of the bar for another alternative, then clearly those
_ alternatives are non-dominating and rank reversal with respect to specific weight
vectors can occur. It is also possible that if the bars of two alternatives overlap, one may
or may not be in a situation of domination, and rank reversal is possible in this case too.
' However, these are exactly the alternatives that one requires a method for ranking. In
 this latter case, overlapping bars, one can determine additive value function domination
- under a hierarchy only by looking at all of the extreme point solutions, which is not a
_ trivial problem in a deep hierarchy. The method presented here for determining the full
range an then ranking captures all possible decision maker opinions on the weights and
uses all of this information by ranking based on the midpoint. When there is not a clear

preference for one alternative over another (overlapping situation) one can observe
what happens to the results when one considers a change in the hierarchy at an upper
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level (in the example presented in the last section, this meant switching the order of
importance of the economic and environmental sub-categories). If this switch st
supports one alternative over another based on the midpoint, then it is further support
for this ranking since now, not only does this ranking capture the majority of possible
decision makers that agree with the first hierarchy but also those that agree with the
second. The ranking is in this sense less risky.

The method proposed above is well suited for determining a quality index for
various purposes. For example, currently under development is the determination of a
decision hierarchy that will properly define an Index for Rangeland Health. This index
could then be used as a decision aid in determining, for example, where remedial action
is needed, or to which areas limited funding might be allotted or which land areas are
best suited for a given purpose or for purchase or exchange. A hierarchical structure
that includes Biodiversity Conservation, Soil Stability and Watershed Function, and
Animal Production at the second tier level followed by those elements that define or
contribute to these topics is being proposed. This work is being conducted by
cooperative research between scientists with the Agricultural Research Service (ARS)
and the Natural Resources Conservation Service (NRCS) of the United States
Department of Agriculture (USDA). In addition, the methodology described in this
paper has been proposed for use in the development of a Soil Quality Index by the
above agencies for all regions of the United States.

Index ranges can be compared and contrasted in many different ways. For example,
given a specific hierarchy structure, the index range for a number of rangeland sites can
be viewed side by side. Alternatively, a single site's index ranges for multiple decision
hierarchy structures or scenarios could be viewed in a single graph. Temporal
comparison of the index range for a single site given a single hierarchical structure may
also be of interest for long term planning.

As illustrated in the farming system problem above, the method can be a valuable aid
to decision makers especially in the case of multiple decision makers or stakeholders.
The ability of the method to take into account other viewpoints and to examine the
impact of many scenarios on the ranking of the alternatives, could make it a strong
negotiation tool between conflicting parties.

We suggest that the procedure introduced here could also be a valuable tool in the
analysis of hierarchies with more than two levels which according to final remarks in
Lootsma (1996) has several open research issues. The effect of changes to the structure
such as splitting criteria on the additive value measurement range is easily examined for
any permutation, addition or deletion to the existing structure. Furthermore, this
information is available at each branching point in the hierarchy for each alternative and
can be used to determine the impact of any changes. A generic spreadsheet macro
program has been developed to apply the method.
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